Increased rainfall to provide some relief to dryness in parts of southern Africa

Africa Weather Hazards

1. Abnormal dryness has expanded across many portions of southern Africa from southern Angola, northern Namibia, southern Zambia, eastern Zimbabwe, central Malawi, central Mozambique, southern Botswana, to South Africa due to a delayed onset and persistent below-average rain since the start of the season. The deficient rain has already severely reduced water availability, negatively impacting cropping and pastoral activities over many areas.

2. Poorly-distributed rain since October has resulted in large rainfall deficits over north-central Kenya, potentially negatively affecting pastoral conditions over the region. The forecast suppressed rain during the next week could further increase moisture deficits in the region.
Africa Overview

Widespread dryness persists over southern Africa

Since the beginning of October, seasonal rainfall has performed well below average across most countries of southern Africa. The southern African monsoon was characterized by a delayed onset to rainfall season, which was followed by a poor temporal and spatial rainfall distribution over many areas of the sub-region. The delayed onset to the season exceeded forty days over some areas such as southern Angola and eastern South Africa. The delayed onsets to the season and uneven distribution in rain have resulted in increasing moisture deficits throughout southern Africa. An analysis of the accumulated rain since October indicates widespread large deficits between 50-100 mm extending from Angola, Botswana, South Africa, to Mozambique (Figure 1). Following a poor rainfall performance during the prior season, the ongoing, insufficient rain has already substantially reduced water availability and negatively impacted cropping and pastoral activities over many areas. Reports have indicated livestock deaths over many countries due to lack of pastures. During the past week, moderate to heavy rainfall was observed over Angola, western Zambia, and northeastern South Africa, while reduced rainfall amounts below 25 mm were received elsewhere. Over the eastern portions of Southern Africa, suppressed rain was observed over eastern Zimbabwe and the southern half of Mozambique, which led to growing thirty-day rainfall deficits across the region. If poor rain continues over the upcoming weeks, seasonal moisture deficits will continue to grow, which could reduce water availability further and result in widespread, stressed crops and more livestock deaths.

Next week, an increase in rain is forecast over the southeastern parts of southern Africa. Heavy rain is expected in northern and eastern South Africa and southern Mozambique (Figure 2). Farther north, abundant rain is expected in western Angola and Tanzania, while moderate rain is forecast over Zambia and Zimbabwe. Meanwhile, light to no rain is forecast elsewhere.

Above-average rain was observed in Eastern Africa since the beginning of the October-December rainfall season

Well above-average rainfall has been observed over Eastern Africa since the beginning of October. Rainfall surpluses in excess of 100 mm were observed over Uganda, southern Kenya, northwestern Tanzania, southern Ethiopia, and southern Somalia (Figure 3). Though the season had started late over many areas, tropical disturbances and wet spells brought ample moisture during November. During the past week, reduced rain was recorded over Eastern Africa relative to that of the week prior. However, locally moderate rain continued over localized areas of southern Kenya and southern Somalia. For next week, a return to an increased rain is forecast over Tanzania and southern Kenya, while scattered, light rain is expected in north-central Kenya and Somalia.
Central Asia Weather Hazards

No hazards posted for Central Asia

Temperatures:
Significantly above-normal temperatures (3 to 7 °C) prevailed across most of the region from November 29 to December 5. Maximum temperatures warmed above freezing as far north as northern Kazakhstan, while maximum temperatures reached 30 °C in southern Turkmenistan. The GFS model indicates that above-normal temperatures are likely to persist through mid-December.

Precipitation:
During the past week, light to moderate precipitation (less than 25 mm, liquid equivalent) was observed across Kazakhstan, Kyrgyzstan, and northern Uzbekistan. Dry weather prevailed across the remainder of the region. Precipitation has averaged at or above-normal during the past 30 days throughout Central Asia. Since the beginning of October, snow water volume has been above-average across the basins of northeastern Afghanistan and western Tajikistan, according to model analyses. Widespread precipitation is expected across the region during the next week with locally heavy snow (25 mm or more, liquid equivalent) possible at the highest elevations of northeast Afghanistan, Kyrgyzstan, and Tajikistan.

Central America and the Caribbean Weather Hazards

1. Low and infrequent seasonal rainfall has led to anomalous dryness and poor ground conditions in northwestern Haiti and northwestern Dominican Republic.
Central America and the Caribbean Overview

Decreased rains received across much of Central America during the last week

In early December, the return of seasonable to enhanced rains was observed across Central America. According to satellite information, the highest precipitation accumulations were throughout northern Honduras and northern Guatemala, with lesser amounts across several interior departments of El Salvador, Honduras and Nicaragua. During the last 30 days, seasonal rainfall continues to range between average to well above-average across much of Central America, with the largest moisture surpluses (>100mm) prevalent throughout many parts of Guatemala, Honduras and Costa Rica region. However, low to moderate moisture deficits remain over many departments in the northern departments of coastal Honduras. Satellite-derived vegetation health indices suggest that ground conditions in Honduras and Nicaragua may not be negatively affected, as the frequency (i.e. number of rain days) of seasonal rainfall has ranged from normal to above-normal.

For the upcoming outlook period, average to slightly below-average rainfall is forecast throughout much of Central America. Heavy rainfall accumulations are possible in northern Guatemala, and along the Atlantic coastlines of Belize and Honduras. Minimum temperatures are expected to be below-average across the higher elevations of Guatemala, El Salvador and Honduras, but not fall below freezing temperatures during the next seven days.

Enhanced rainfall over southern Hispaniola has led to improving ground conditions in the south

For the second consecutive week, increased rainfall fell across much of Hispaniola, with the highest precipitation accumulations observed across southern Hispaniola. According to satellite data, weekly rainfall totals were greater than 100mm for several southern departments of Haiti and the Dominican Republic, with nearly 150mm received in local areas in the Sud, Sud-Est, and Ouest departments. The increased rains have led to a rapid increase of moisture surpluses, particularly in southern Haiti. Over the last 30 days, many local areas in southern Haiti are now experiencing two to four times their normal rainfall accumulation for November and early December. The evolution of vegetation indices suggest much improvement over southern Haiti, however, unfavorable conditions are still noted in the northern departments of Haiti and northwestern Dominican Republic where recent rains haven’t been as abundant. During the upcoming week, a return to a more seasonal rainfall distribution is expected for much of the island. Locally moderate amounts are forecast for interior Hispaniola, with lighter amounts forecast for coastal areas.

ABOUT WEATHER HAZARDS

Hazard maps are based on current weather/climate information, short and medium range weather forecasts (up to 1 week) and their potential impact on crop and pasture conditions. Shaded polygons are added in areas where anomalous conditions have been observed. The boundaries of these polygons are only approximate at this continental scale. This product does not reflect long range seasonal climate forecasts or indicate current or projected food security conditions.